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Cluster decimation derivation of exact percolation-thermal 
crossover exponent in dilute spin models 

R B Stinchcombe 
Department of Theoretical Physics, 1 Keble Road, Oxford OX1 3NP, UK 

Received 6 September 1982, in final form 11 October 1982 

Abstract. It is shown that the decimation method of renormalisation group theory in a 
restricted parameter space, applied to any cluster, gives the exact unit value for the 
percolation-thermal crossover exponent for bond-diluted Ising, Potts and anisotropic 
Heisenberg models. 

1. Introduction 

The percolation-thermal crossover exponent plays a key role in the behaviour of 
dilute spin systems. As described at the beginning of 0 2 it determines the shape of 
the phase boundary at the percolation threshold, at which the transition temperature 
falls to zero, and it governs the competition between the geometric and thermal factors 
limiting the divergence of the correlation length and, through it, the critical properties 
near the threshold. 

Renormalisation group theory gives a framework in which such exponents can be 
obtained. Normally approximate values are obtained, usually by stopping at some 
finite order in the epsilon or loop expansion, or by working with the real-space 
renormalisation methods on simple clusters. In the case of the percolation-thermal 
crossover exponent, however, the earliest cluster calculation for a dilute spin model 
(Young and Stinchcombe 1976) gave unit result for 4, as did subsequent calculations 
on different specific clusters (Jayaprakash er a1 1978, Yeomans and Stinchcombe 
1978, 1979, Stinchcombe 1982 and references therein). Using the E expansion, 
Stephen and Grest (1977) and Wallace and Young (1978) succeeded in proving that 
the unit value for the crossover exponent remains for dilute Ising and Potts models 
to all orders in the E expansion: 

4 = 1. (1) 
The purpose of the present paper is to show that the result (1) is also obtained by 

a proper application of the real-space (cluster decimation) method, independently of 
the nature and size of the cluster used, with the use of a restricted parameter space. 
The result is true for bond-diluted systems of Ising, Potts and anisotropic Heisenberg 
types. 

The physical reason for the result is closely related tothat underlying the derivation 
of 4 given by Coniglio (1981a, b), which considers the nature of the backbone of the 
incipient infinite cluster at the percolation threshold, and directly evaluates the average 
susceptibility on the incipient infinite cluster. Though Coniglio’s discussion is based 
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1290 R B Stinchcombe 

on cluster statistics while ours concerns the real-space renormalisation group scheme, 
both depend on the limiting role played at low temperatures near the percolation 
threshold by the effect of one-dimensional paths. Our discussion also explains why 
the real-space renormalisation group (RSRG) method, even on simple clusters, can be 
so effective in dealing with dilute systems. 

The structure of the paper is as follows. In § 2 we briefly introduce the basic ideas 
and.notation of percolation-thermal crossover in dilute spin systems, and its treatment 
by renormalisation group procedures. In § 3 we give some preliminary general 
development and illustrate with simple examples based on specific clusters the main 
steps behind the RSRG procedure. This serves as an introduction to the general 
treatment given in § 4 ,  which shows that independently of the cluster used and of 
another customary approximation (the ‘first moment’ approximation) the RSRG method 
for bond-diluted Ising models will always lead to unit value for 4. Section 5 is a brief 
discussion including an extension of the treatment to bond-diluted Potts and 
anisotropic Heisenberg systems. 

2. Crossover near the percolation threshold in dilute systems 

The phase boundary separating ordered from paramagnetic regimes in a simple dilute 
magnet is shown schematically in figure 1. Throughout this paper we shall be concerned 
with the neighbourhood of the percolation threshold A, where the concentration p 
takes the critical value p c ,  and temperature T is zero. It is simplest for us to consider 
here only (quenched) bond dilution, where p is the concentration of non-zero exchange 
bonds: site dilution has, by universality, the same critical exponents. 

P 

Figure 1. Schematic phase diagram of temperature against concentration for a diluted 
magnet, showing the percolation fixed point A. 

As A is approached from any direction the correlation length 5 diverges, and this 
divergence induces the critical behaviour of the system. The purely geometric (percola- 
tion) divergence at zero temperature is the divergence of connectivity length scale 
associated with the appearance of the infinite cluster of connected spins: 

(2) 5 a l p  - P C I - ” ”  p - p c ,  T=O. 
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The divergence of 5 as the temperature is reduced to zero at p = p c  is a thermal effect 
related to the spin correlations on the incipient infinite cluster: 

[cc&-y‘ T - 0 ,  p = p c .  (3) 
In (3) we have introduced the appropriate characteristic low-temperature variable for 
the spin system, which is 

E ( T )  = 2 exp(-2J/kBT) (4) 
in the case of spin-5 Ising systems, and has a closely related (exponential) form, to be 
given in § 5 ,  for Potts models and anisotropic Heisenberg systems. 

Equations (2) and (3) are special cases of the general critical dependence of 6 on 
concentration and temperature, which is expressed through a scaling form in terms 
of the two scaling fields ( p  -pcIyp and E 

- 1 = E w( T ) .  I P - PcIYD 

5 
In place of the function (P, a related scaling function with argument Ip - p c l * / ~  can be 
used. 4 is the crossover exponent given by 

4 = .,/ut. (6 )  
Any pair of the three exponents vt, vp and q5 gives the critical dependence of 5, 

and through it the whole thermal-geometrical critical behaviour of the system. Of 
particular importance is the crossover exponent 4 since this governs the competition 
between the thermal and geometrical influences on the critical behaviour, and in 
particular determines the shape of the critical curve near the percolation threshold. 
The critical curve, along which 5 diverges, is (from ( 5 ) )  where the argument of @ 
takes the particular value corresponding to a zero of @, so the critical temperature 
T, is given by 

E(TC)EIP -pel+. (7) 
Two parameters, p and T, are required for the description of the diluted system, 

if we ignore field dependence, anisotropy and other generalisations. The renormalisa- 
tion group procedure is to consider the transformation of such parameters under a 
change of length scale of the system (dilatation by scale factor 6 ,  say). In the Ising 
case, where the most convenient thermal variable is, instead of T, 

t = tanh J / k a T  (8) 

(with J the exchange constant), the parameter transformation under dilatation by b 
takes the form p + p ’ ,  t + t ’ ,  where 

p ’ = R @ )  (9) 

t’ = Q ( p ,  t ) .  (10) 
We have taken here a simple situation, such as those considered in the next section, 
where the dilatation involves no increase of parameter space, i.e. the generation of 
new couplings and correlation has been ignored. The fact that the right-hand side of 
(9) does not involve the thermal variable t is because in such quenched dilution 
problems the probability p ‘  of nearest neighbour connections on the scaled lattice is 
determined geometrically. 
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Standard arguments (Wilson and Kogut 1974, Stinchcombe 1982) then give the 
percolation threshold A ( p  =ec,  t = 1) as a fixed point of the transformations (9) and 
( lo) ,  and the exponents v, and Y, are given as follows in terms of the eigenvalues A, 
and A ,  of the transformations (9) and (10) linearised in the neighbourhood of this 
fixed point: 

hl / ’ ’D  = A (1 I! 

b = A t  (12) 

where 

A,=- d R ( p ) l  dP P ’ P C  

At=zl dQ . 
p =p,,r= 1 

It can be seen from (11) and (12) that if 

h p = A t  (15) 

it follows that the crossover exponent 4 (equation (6)) is unity, as expressed by (1). 
The aim of this paper is to derive (15), and hence ( l ) ,  by application of RSRG 
procedures on any cluster. 

The next section (§ 3) gives some general preliminary discussion, and shows how 
(15) follows in the usual RSRG treatments of bond-diluted systems using specific 
clusters; 8 4 shows that the result is quite general, not dependent on the clusters used, 
nor on the usual ‘first moment’ approximation also used in 8 3. 

3. General preliminaries and illustrations of how 4 = 1 follows from RSRG on 
specific clusters 

Two approximations are normally used in RSRG treatments of dilute spin systems. 
(i) Restriction of the calculation to a specific simple cluster. 
(ii) Scaling of the distribution of random exchange interactions back to the original 

binary form by using a first moment approximation on the thermal variable t. (This 
is explained in detail in § 4.) 

Young and Stinchcombe (1976) showed, using specific clusters (approximation (i)), 
that equal results are obtained for the percolation and thermal eigenvalues A, and A t ,  
leading to unit value for 4. Other derivations of this result, using approximations (ij  
and (ii), have been given by subsequent authors (Jayaprakash et a1 1978, Yeomans 
and Stinchcombe 1978, 1979). In this section we illustrate this point with selected 
examples. The examples are chosen to introduce the basic ideas and notation needed 
for the removal of restriction (i), which is the most difficult point to be covered by 
the general discussion of § 4. Section 4 also removes restriction (ii); the original paper 
by Young and Stinchcombe (1976) also shows in a different way that it is an inessential 
restriction. 

The usual RSRG method for dilute spin systems, introduced by the above authors 
and reviewed by Stinchcombe (1982), is to arrive at the transformations (9) and (10) 
by decimation of spins employing the two approximations (i) and (ii) above. 
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The simplest non-trivial cluster to use is that shown in figure 2 for the square 

p ’ =  2p2-p4= R ( p ) ,  (16) 

while the effective strength t’ of the renormalised bond connecting A and B is given 

lattice. Then the total probability of linkage from A to B (via 1 and/or 2) is 

by 
2 t 2  

p ’ t ’=  2p2(1 - p 2 ) t 2 + p 4 ~ ~ p ’ Q ( p ,  t ) .  l + t  

Figure 2. Dilatation of the square lattice: undecimated spins A,B, C, . . . lie on a new 
square lattice shown by broken lines, larger by a scale factor b = J2. A152 is the simplest 
cluster, containing a single ‘renormalised’ bond, joining spins A and 5 of the new lattice. 

The percolation threshold for this simple description is given as the fixed point of 
(16) ( p c  = 0.618 , , .) and the transformations (16) and (17) linearised in the neighbour- 
hood of the fixed point p = pc, t = 1 have eigenvalues 

(18) 
So this simple example gives C$ = 1 (Young and Stinchcombe 1976). 

In writing down (16) and (17) we used both a specific simple cluster (figure 2) and 
the first moment approximation which was needed to obtain (17). It may seem that 
the result A P  = A t  is a coincidence €or this special cluster, since the above discussion 
fails to bring out any basic reason for the result. To see that there is an underlying 
structure responsible for the result, and its generalisation to arbitrary clusters, we now 
introduce some general formalism and preliminaries, and then give a few more specific 
examples to indicate the patterns which give the hints for a general result. 

We need to adopt some scheme for distinguishing cluster configurations, that is, 
for a given configuration which bonds of the cluster are present and which are absent. 
It will turn out that three different but related schemes will be useful. The simplest 
(scheme 1) is to distinguish configurations by drawing as, say, wavy lines those bonds 
which are present and leaving blank any bond which is absent. Different diagrams 
then correspond to independent probabilistic ‘events’ and their probabilities can be 
summed. In a second scheme (scheme 2) all series paths joining the undecimated 
spins A and B are drawn, together with all their possible intersections, and their 
probabilities are combined by the inclusion-exclusion principle (Feller 1968). In this 

2 A,, = A t  = +,(I- p ). 
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case, full lines denote bonds which are present (probability p )  and blanks denote 
bonds whose occupation is not specified. A third scheme will be introduced later. 

For some such labelling we suppose that the bond configurations of the cluster 
are labelled by a = 1, 2, . . . and the associated probabilities are denoted by P a ( p ) .  In 
scheme 1, Pu(p) is p"-(l - p I M -  where Nu and Ma are the numbers of wavy and blank 
lines in the diagram representing configuration a,  while in scheme 2 the probability 
P a ( p )  will be p"" with n, the number of full lines in the representation of configuration 
a. We shall also need for each configuration a the quantities Su and Tu(?) ,  where Sa 
is 1 if the configuration gives a linkage (a path of present bonds) from A to B and 
zero otherwise, and where Ta(t)  is the contribution from configuration a to the tanh 
variable representing the exchange coupling between the spins at sites .4 and B. 

Then, summing over all configurations on the cluster being used, 

p ' r ' = p ' Q ( p ,  t )  = E  Pa(p)Ta(f). (20) 
a 

The last equation employs approximation (ii), since it gives the weighted average of 
the contributions of the different configurations to the tanh variable representing the 
exchange coupling. 

Scheme 1 is presented in this paper because it is the easiest to understand and 
because it leads to a relationship for the evaluation of Ta ( t ) .  Scheme 2 is used because 
it is the easiest scheme in which to evaluate the (percolation) eigenvalue of the 
transformation (19). The third scheme, which is much less obvious than the other 
two, will be needed to provide an alternative to scheme 1, in which Ta( t )  can still be 
simply evaluated yet contact can be made with scheme 2 so that the equivalence of 
A, and A ,  can be shown in general (8  4). 

From the concentration transformation in the fo rd  (19), the fixed point p c  is given 
by 

P c  = c Pa ( P c ) S a  
a 

and the percolation eigenvalue by 

A = c P& (p , )Sa .  
a 

In the thermal scaling (20) we first consider the zero-temperature situation (t = 1). 
Any configuration a giving a connecting path provides a non-zero exchange between 
A and B and at zero temperature this makes the resulting contribution Ta to the tanh 
variable equal to unity; if configuration a provides no connection the exchange and 
related tanh variable contributions are zero. So from this zero-temperature consider- 
ation 

(23) Tu ( 1 ) = sa * 

Thus inserting t = 1 into the right-hand side of (20) gives 

making t' also unity. Therefore t = 1 is a fixed point of (20), as required to give the 
zero-temperature percolation fixed point A of figure 1. This is the fixed point of 
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interest in the crossover considerations of this paper, and the linearisation about this 
fixed point is needed to obtain the thermal eigenvalue. For this, we introduce the 
notation 

t = l - &  & < < l e  (25) 
E is then as defined in (4) .  Then, writing the Taylor series T, (1 - E )  to first order and 
using (23) for the zeroth-order term, 

T , ( l - & ) = S , - & T 6 ( 1 ) +  . . .  * (26) 

Inserted into (20) this gives, using (14), 

1 
P c  

A t = - x  p,(pc)T& (1). 

We now discuss the use of schemes 1 and 2 in the evaluation of the eigenvalues 
(22) and (27). This, and the nature of the two schemes, is best illustrated by an 
example, and for this we take the cluster of figure 2. The different configurations of 
this cluster are represented in scheme 1 by the diagrams of figure 3. The first nine 
diagrams do not provide a linkage from A to B and so do not contribute to (19) and 
(20). So we may consider only those diagrams, labelled a = 1, 2 , .  . . 7, which do 
provide a linkage (Sa = 1). Diagrams of the three topologically distinct types a = 1, 
2, a = 3, 4, 5 ,  6, and a = 7 have individual probabilities p2(1 -PI', p3 ( l  - p )  and p4, 
so adding the probabilities of the seven independent events to obtain (19) we recover 
the result (16) and hence the percolation eigenvalue given in (18). The direct evaluation 
of (22) in scheme 1 turns out not to be convenient for us (see below). The direct 
evaluation of (27) is, however, very convenient in this scheme: this is because it is 
possible to show (appendix 1)  that if the diagram a links A and B then 

Th (1) = r ,  (28) 
where ra is the number of single bonds in the diagram a whose removal would 
disconnect A and B. This is essentially because a series path of r bonds gives a 
contribution t r  to the tanh of the effective exchange, while any parallel constituent 
in a path increases the effective exchange for that part of the path and this more 
strongly coupled part is less affected by the variation E of t in (26). For the diagrams 
of figure 3,  

r7 = 0. (29) r l  = r2 = r 3  = r4 = r5  = r5 = 2 

Figure 3. 
figure 2. 

Diagrams of scheme 1 representing the configuration of the simple cluster of 



1296 R B Stinchcombe 

So for the cluster of figure 2 the evaluation of (27) takes the form 

1 
P c  

A ,  = - C pu(pc)raS, 

The result (30) is, of course, quite general within scheme 1. A direct diagram-by- 
diagram evaluation of (22) can also be carried out; however, in order to prove A ,  = A, 
for any cluster, we would like to relate the contributions to (22) and (27), and the 
difficulty in doing this stems from the fact that the differentiation of P, in (22) does 
not bring down a factor obviously related to the ra of (30). The need for some 
regrouping of diagrams to obtain the equivalence of contributions to (22) and (27) is 
thus suggested, and this is the reason other schemes are needed. 

Scheme 2 makes the effect of the differentiation of Pa in (22) very simple, and 
shares an essential aspect (inclusion-exclusion) with scheme 3 .  We now illustrate its 
use for the cluster of figure 2. For this cluster, the diagrams of scheme 2 are shown 
in figure 4. Similar diagrams have been used elsewhere (see, for example, Stinchcombe 
and Watson 1976). The third diagram is the intersection of the first two, and is drawn 
in two equivalent forms. The minus sign is that required by the inclusion-exclusion 
principle in combining probabilities. In scheme 2 only diagrams with Sa = 1 have been 
considered from the outset. The ‘probabilities’ are PI = Pz  = p  and P3 = (-l)p4, 
leading at once, via (19), to (16). Now (22) can be used very simply, since, in scheme 
2, lP,l is the n,th power of p where nu is the number of full lines in the diagram, and 

P& = (n,/p)P,.  (32) 

2 

so 

A rB  
a.1 a-  2 a : 3  

Figure 4. Diagrams of scheme 2 for the simple cluster of figure 2 .  

Equation (22) therefore takes the form 

Like (30) this is again a general result, but it holds in a different scheme; so P, in 
(30) and (32) are different, and furthermore nu and r, are not simply related. For 
the diagrams of figure 4, (33) becomes 

Because of the comments under (33) we would seem to be no nearer finding a 
general approach to obtaining a cluster-independent equivalence of A, and A,. 
However, the regrouping involved in scheme 3 does give the required framework for 
a general result. 
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The graphs of scheme 3 are obtained from those of scheme 2 by combining, in 
the manner of the inclusion-exclusion principle, all intersections of other graphs with 
a given graph. Thus in our simple illustration we group the scheme 2 graphs (figure 
4) as shown in figure 5 to obtain the graphs of scheme 3 .  The idea is now still to use 
scheme 2 for the evaluation of A, via (33), but to use the new scheme 3 for the 
evaluation of A t ,  and to show a general relationship between the two schemes, which 
are obviously more closely related than scheme 1 is to scheme 2. An essential point 
is that T &  (1) is still easy to evaluate in scheme 3:  the intersections combined with a 
basic graph to give a graph of scheme 3 correspond to parallel path corrections which 
do not change T&(1) (appendix l), but of course they do contribute to the probability 
factor. So, for the graphs of figure 5 ,  

P3 = p 4  2 4  P 1 = P z = p  - p  

T i  = T i  = 2  T i  = O  

again giving, through (27), the result 4pJl  - p f  j for A t .  

(35)  

(36)  

c ( = 1  a:? u = 3  

Figure 5. Diagrams of scheme 3 for the simple cluster of figure 2. 

The evaluation of A, using (33)  in scheme 2, and A ,  using (30)  in scheme 3,  is now 
given for a more complicated example, employing the twelve-bond cluster of figure 
6(a) ,  which can be built up from the series paths i = 1, 2, 3 of figure 6 ( b ) .  The 
diagrams of scheme 2 are the paths { i } ,  and their intersections { i J } ,  {inink}, as shown 
in figure 7. The factors in the evaluation of the terms of (33)  are shown in table 1 

A 

' Z 1  J:2 J z 3  

ib l  ' c '  

Figure 6. ( a )  Twelve-bond cluster; ( b )  the three series paths, i = 1, 2, 3, between 
undecimated spins A and B, which are required to treat the full cluster ( a ) .  

rJ /--P--F- $- P- 
CY.1 a : ?  a :  3 a = L  a z 5  4 - 6  n z l  

Figure 7. Diagrams of scheme 2 for the cluster of figure 6 ( a ) .  
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(S, = 1 for all diagrams drawn). The diagrams of scheme 3 are 

{ i -  irj+ c inink ] {i-i- c inink] { in ink}  

A t = A , =  18pz - 8 p z  - 2 0 ~ :  +12pa1. 

i (+i )  j > k ( # i )  k ( + i , i )  

as shown in figure 8, and their contributions to (30) are built up in table 2. In this 
example we thus obtain 

(37) 

The next section uses schemes 2 and 3 to establish the equivalence of A, and A t  
in general. 

Table 1. Evaluation of A,  using scheme 2 diagrams 
of figure 7 .  

Table 2. Evaluation of A ,  using scheme 3 diagrams 
of figure 8. 

a Pa na a Pa ra 

6 

p 6  6 
10 
10 
8 

p :  6 
1 
2 
3 
4 
5 

10 

- p  10 

- p  8 
6 - P  
7 P I Z  1 2  

1 p :  - 2{10 + P I 2  6 
2 P - P  - P : : + P ; :  6 
3 P 6 - P 8 ; P  + P  6 

2 5 

2 
6 
7 

4 p ' o -  2 
10 p 1 2  

- 4 2  4 

I 
- 1 Punasa = 1 8 p 5  - 8 p 7  - 20p9 + 1 2 p "  
P a  

1 
- 1 Parasa = 1 8 p 5  - 8 p 7  - 2 0 p 9  + 12p"  
P a  
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4. General proof of unit crossover exponent in RSRG 

To show that (I) follows quite generally from the RSRG method we have to give a 
derivation without the restrictions (i) and (ii) at the beginning of B 3. 

The procedures developed at the end of 8 3 enable us now to remove restriction 
(i), and to obtain a cluster-independent equivalence between A p  and A t  as defined by 
the first moment approximation (20). We remove the first moment approximation 
later in this section. 

To obtain the equivalence with general clusters we use (33) with scheme 2 for the 
evaluation of A,, and (30) for the evaluation of A t  in scheme 3, and show the exact 
equivalence of the two results. 

We adopt the notation {i} for paths, and { i  n j} for the set of pairwise intersections 
of those paths, etc, as already introduced in 9: 3. 

The contributions of any cluster are then represented, in both schemes 2 and 3, 
by a set of paths {i} and multiple intersections of those basic paths; only the grouping 
of the intersections is different in schemes 2 and 3. 

In scheme 2 the diagrams are 

cr = ( i } ,  - { in j } ,  ( i n i n k } ,  . . . (38) 

and the associated probability and bond-number factors are 

where we have used in in . .  . as a more explicit diagram label than cy, and nini is the 
number of bonds in diagram i n j .  etc. Then (33) becomes 

In scheme 3, the diagrams and probability factors are 

p=(Pc) = {PI - 1 Pip, 1 Pi,+,k], {Pi,, - 1 Pl,fnk +. . . 9 . * (43) 

We also need the following simple results (appendix 2 )  for re, the numbers of 
'disconnecting' single bonds in the basic diagram which, together with its intersections 
with other diagrams, comprises the full diagram (Y of scheme 3: 

J ( f l )  j > k ( # i )  k ( # W  

ra = {nil, inl + n, - nln, 1, { n l  + n, + n k  - knJ - n l , k  - n1-k + nl,Jnk}, . . . . (44) 
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Then evaluating (3) in this scheme gives 

It is now a straightforward exercise to show that (45) reduces to (41), thus proving 
the equivalence to A,, independently of the cluster. Thus, in general 

A, = A ,  (first moment). (46) 

It now remains to remove the first moment restriction given as (ii) at the beginning 
of Q 3.  The essential points are already included in Young and Stinchcombe (1976), 
but we give a brief, yet complete, treatment here. The tanh variable t used up to 
now is strictly the effective value of a bond-random variable, ti, say (where i now 
labels a particular bond). This random variable is initially distributed with a binary 
probability distribution 

(47) 4dti) = (1 -p)d(ti) +@(ti - t ) .  

4 n ( t i )  = (1-pflP(ti)+pne,(ti) (48) 

However, after n scalings the distribution takes a non-binary form 

where 

Here the products Il go over all the bonds of the cluster being used in the scaling, 
and T{t,} is the value of the tanh variable representing the coupling between the 
undecimated spins (A,  B )  of the cluster when the bond variables of the cluster take 
the values {t,}. Equation (19) follows exactly from (48) and (49) by picking out the 
weight pnil of the terms in (49) which correspond to all the linkages between the 
undecimated spins: this is done by placing all t ,  = 1 in the right-hand side of (49) and 
using (23) (cf below), and identifying the transformation function R from 

P n + l  = R ( P n ) *  (50) 

~ , ( t , ) - -S ( t , - - t )  

Equation (20), is, however, obtained from (49) by making the binary approximation 

(51) 
and setting t’ so that it gives the correct first moment dt, &,+l(t,) of equation (49) 
(Stinchcombe and Watson 1976). This is the ‘first moment’ approximation referred 
to as restriction (ii). 

We now show that this approximation maintains the exact value of A t .  A ,  is the 
eigenvalue of the transformation linearised in the low-temperature region. It is 
possible to show that in this region an initially binary distribution does not depart 
much from binary form under the transformation (49). To do this we insert into (49) 

(52) 

en + (t,  ) - s ( t, - t ‘1 

4n(tr) = (1 -Pn)S(t l )+pns( t l  - t ) .  
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The two parts of 4" correspond to bond i being absent or present, and when the 
integrals over {dt,} are carried out in (49) the right-hand side becomes a sum of terms 
corresponding to all the specific configurations of the cluster obtained by allowing 
each bond to be present or absent. Any such term would correspond to a configuration 
listed in scheme 1 and labelled by a = 1 , 2 ,  , . , , For each such term the scaled random 
variable t, takes the value T,{r,} where 

Tu{rll= T,U) (53) 

and T,(t) is as used previously. The probability of the term is again P,(p). The 
difference from our earlier considerations is that we are now able to see that there 
are many possible outcomes for t,, amounting to a non-binary distribution for r,. 
However, since the analysis concerns only the low-temperature region, the results 
(26) and (28) can be used: 

T,{t,j= I - E r ,  +o(E*)  (54) 

(again we need only consider configurations a which give a linkage, i.e. for which 
S ,  = 1). Since F is initially small (low temperature), TQ{tt} is close to 1, which means 
that all the possible (non-zero) values of the scaled r, are also close to 1. (This is 
related to the fact that any coupling of spins is enough to make them likely to be 
parallel at sufficiently. low temperatures.) Thus if the initial t, is given by a binary 
distribution (52) with r close to 1, the scaled r, is given by a distribution of the form 
(48) with e(?,) a function which is only non-zero for t, very near 1, i.e. again cbsely 
approximating a binary distribution of the initial form. This form is therefore approxi- 
mately preserved; and though the distribution is not strictly binary after scaling, it 
can be seen from (54) that since E is small the nth moment of the scaled distribution 
involves n times the average of r, over all configurations of the cluster, and so any 
such measure of the effective value of the scaled exchange gives a result equivalent 
to (20) in the low-temperature form (27) or, more explicitly, (30). Thus the 'first 
moment' approximation (ii) is exact for the thermal eigenvalue A ,  of the transformation 
linearised at the zero-temperature fixed point: 

( 5 5 )  

The demonstration, at the beginning of this section, that for any cluster the 
percolation and 'first moment' thermal eigenvalues are the same (equation (46)), taken 
together with the result ( 5 5 )  just established thus leads to 

A t  (first moment) = A t .  

A, = A ,  

d = l  
(56) 

(57) 

for the dilute Ising model as treated by the RSRG method applied to a n y  cluster in a 
restricted parameter space. This is the exact result we set out to show. 

5. Discussion 

The unit crossover exponent result (1) has been shown quite generally for the dilute 
Ising model with the RSRG method, except that a restricted parameter space has been 
used. In a complete calculation on clusters of the full generality discussed here, further 
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neighbour linkages and correlations will be generated. That is, both the thermal 
variable t and the concentration variable p become just the first members of extended 
sets of parameters. The result we have established ignores all other members, and is 
therefore not a complete position-space proof that q5 = 1. Of course, if the one- 
parameter description is exact in some limit, consideration of that limit would be a 
possible way of completing the position-space derivation. The work of Reynolds et 
a1 (1980) has often been taken as evidence that the one-parameter description is 
asymptotically correct in the limit of large cluster size (b  + 00) suggesting that the 
extension of our work to that limit completes the derivation. However, the work of 
Reynolds et a1 is for the case of percolation (the 4-state Potts model at 4 = 1) while 
subsequent work of Tsallis and Levy (1981) indicates that for Potts models at higher 
4 the method will not converge to the exact result as b +Co. This limit does not 
therefore seem to provide the extension needed to generalise our discussion. Even 
if it did, we should encounter other problems: in the limit b + 00 clusters of arbitrary 
size would have to be allowed for, in which case r, in (26), (54), etc, could diverge and 
the range in which such equations were applicable would presumably shrink to zero. 
(We stress here firstly that for any finite renormalisation group cluster, the situation 
considered throughout this paper, ra is necessarily finite and the thermal percolation 
crossover considered here can be discussed in terms of just the first-order terms (22) 
and (27) in the expansions of (19) and (20), i.e. employing in particular (26) and (54) 
only to first order in E ,  which is a crucial aspect of our derivation, and secondly that, 
though ro: is finite for the renormalisation group clusters, the iteration of the consequent 
renormalisation group recursion relations generates, as it should, an infinite number 
of cutting bonds for the real lattice near the percolation threshold.) In summary, our 
discussion is restricted to a one-parameter space; however, the fact that the E expansion 
proof (Stephen and Grest 1977, Wallace and Young 1978) of (1) is not restricted to 
a simple parameter space suggests that some relatively straightforward extension of 
our viewpoint should remove the limitation. The most obvious extension ( b  -00 )  is 
probably not suitable. Alternatively, we might try extending the work to an unlimited 
parameter space. We have not been able to do that here, though the form of the 
arguments given in the first half of P 4 suggests certain possibilities for the inclusion 
of further neighbour contributions to the thermal and geometrical parameters on an 
equal footing. 

As was pointed out earlier, the dilution considered here is bond dilution. That is 
sufficient for our purposes, since universality implies that the exponents vt and vp for 
the site-diluted case will be the same. However, it should be emphasised that it is 
much more difficult (impossible ?) to prove the results (56) and (57) in the RSRG 
scheme with site dilution because, unlike the bond-diluted case, particular clusters do 
not yield 4 = 1 (Yeomans and Stinchcombe 1979) so it is difficult to see a general 
result emerging when tackled by that route. 

Up to now, only the dilute Ising model has been considered here. However, 
Yeomans and Stinchcombe (1980) also found that a specific cluster calculation for 
the bond-diluted Potts model gave 4 = 1, which suggests that our treatment should 
generalise to that case. Indeed, the general treatment can easily be extended to all 
(bond) dilute Potts models, to the dilute anisotropic Heisenberg model, and to other 
models whose (pure) ground state is separated by a gap from all excited states. This 
feature leads to the existence of a low-temperature exponential variable, cf (4), and 
to an immediate generalisation of the results such as (28) where the form of the 
particular thermal variable enters. In the case of the S-state Potts model, in place of 
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the t variable, 

exp(SK) - 1 
exp(SK) + ( S  - 1) 

U =  =f(K) K = J / k s T  

has to be used (Yeomans and Stinchcombe 1980). The zero-temperature fixed point 
value of this (K + 00) is again 1 and results such as (3), ( 5 ) ,  (7), (23), (26), (28), (30), 
(54), etc, follow, as shown in appendix 1, but with the use of 

E = S exp(-SK) (59) 
instead of (4). In the case of the dilute anisotropic Heisenberg model, a crossover 
from isotropic Heisenberg behaviour to Ising-like behaviour occurs as the temperature 
is lowered, if the anisotropy is sufficiently weak (Stinchcombe 1980a, b), while if the 
anisotropy is strong the behaviour is always of Ising type. In either case, the limiting 
thermal-percolation crossover in the neighbourhood of the percolation fixed point is 
again governed by an Ising-like variable (and all the results of this paper apply) but 
with an effective exchange depending on the size of the anisotropy. The isotropic 
Heisenberg model does not, however, have unit percolation-thermal crossover 
exponent since, by virtue of the continuous nature of its excitation spectrum, results 
such as (28) and (54) do not apply. In this case another exact result can be proved 
(Stinchcombe 1979, Coniglio 1981a, b) relating its crossover exponent 4 to the 
percolative conductivity exponent of the corresponding dilute resistor network. 

Appendix 1. Proof of relationship (28) 

A proof is given here of the relationship (28) between the contribution T&( l )  of a 
cluster configuration Q to the thermal eigenvalue and the number r, of disconnecting 
single bonds in the cluster configuration as represented in scheme 1. 

First consider a diagram of scheme 1 representing a cluster configuration Q in 
which a non-zero exchange from A to B arises via a single path of n bonds in series 
(possibly with dangling ends, etc) as shown in example ( a )  of figure 9. Then, by the 
usual results for decimation of Ising chains (Nelson and Fisher 1975, Young and 
Stinchcombe 1976) 

T,(t) = t" 

T & ( l ) = n .  

In this example the number r, of disconnecting bonds is n ,  since removal of any of 
the bonds in the series path disconnects A and B ;  so (A2) establishes (28) for a special 
case. 

Next consider the effect of a parallel constituent in a path of bonds from A to B, 
as illustrated by example ( 6 )  of figure 9, where m, n ,  r and s label the numbers of 
bonds in the different parts of the path. Here 

T,(t) = t"'".?Trs(t) ('43) 

where .?Trs arises from the parallel part and is given by 
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I b :  ( C !  

Figure 9. Representative diagrams of scheme 1 to illustrate the proof of (28): (a)  a 
diagram in which a single path of bonds in series, with dangling ends, contributes non-zero 
exchange from A to R, (6)  a diagram with a parallel constituent in the path of bonds 
from A to B, (c )  a more complicated diagram. 

It is easy to check that 

YL(1) = 0 
and so 

Th ( 1 )  = m +n. 

This is again a special case of (28), since the number r, of disconnecting bonds in 
figure gib) is m + n. 

This result generalises in a straightforward manner to the case where three or 
more parallel paths of q, r, s . .  . bonds in series occur, when Yrs is replaced by 
tanh(tanh-' t 4  + tanh-' t' + tanh-' t S  + . . .), which again has zero derivative at t = 1. If 
one of the paths added in parallel has itself a parallel insertion, in place of tanh,' t 4  
(say) one has instead a term of the form tanh-'(tqll'qz~s,s,(t)) (cf (A3)) and again the 
parallel parts do not contribute to the derivative T &  (1). 

Thus for a diagram of general form, with various types of parallel connection, 
dangling bonds, etc, we obtain the required result 

TL( l )=r ,  (A7) 
where r, is the number of disconnecting bonds in the diagram. A typical example is 
shown in figure 9(c), where r, = I + m + n.  

The result (A7) can be proved in a similar way for the anisotropic Heisenberg 
model below its anisotropy crossover temperature, for the Potts model and for other 
systems with a gap spectrum. For the Potts model, for example, t is replaced by the 
Potts model variable U defined in (58) ,  and Ta(t)  becomes U,(u) where U, is the 
contribution of diagram a to the variable U of the effective bond coupling A and B 
in the decimated lattice. Then (Al )  is replaced by (Yeomans and Stinchcombe 1980) 

U, ( U )  = U "  (A8) 
and (A3) by 
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withf(K) as defined in (58). It is easy to show that Qk(1) is zero and results analogous 
to (A6) and (A7) follow in an obvious manner. 

From the proof of (A7) (or the analogous proof for the Potts and other ‘gap’ 
systems) it can be seen that when (in scheme 3) the inclusion-exclusion combination 
of paths causes parallel loops to be added to graphs, these have no effect on the 
contribution to T & ( l )  (or U & ( l ) ,  etc), as stated in the paragraph above (35) and used 
at various stages in the paper. 

Appendix 2. Proof of relationship (44) 

A proof is given here of the result (44) for the number ra of ‘disconnecting’ bonds in 
the basic diagram which together with its intersections with other diagrams comprises 
the full diagram a of scheme 3. 

The results (441, and the description of the ‘basic’ diagram given in the above 
paragraph, are best illustrated by simple examples. First consider diagram a = 3 of 
figure 8. The first (‘sawtooth’) member of this diagram (i.e. the path i = 3 of figure 
6(6)) is here the ‘basic’ diagram since taken together with its intersections with other 
paths it leads to all the members of the diagram a = 3 of figure 8. In this example 
the basic diagram is i and the full diagram is 

( i -  inj+ injnk) withi = 3  
i C Z i )  j > k ( + i )  

and it is clear that ra for this basic diagram is just the number ni of bonds in the 
sawtooth; this is an illustration of the first parts of equations (42) and (44). 

Now consider diagram a = 4 of figure 8. The full diagram here is 

where using the path labelling of figure 6 ( b )  i = 1, j = 2. The basic diagram is then 
just i r j  with i = 1, j = 2, i.e. diagram 4 of figure 7. This diagram has re = 2 while 
according to (44) this basic diagram, being the intersection of two paths, i and j ,  should 
have 

(A1 1) ru = n, + n, - ntnJ i = l ,  j = 2 .  

That this is so is easily seen by reference to the following diagrammatic form of 
equation ( A l l ) :  

where the left-hand side represents the number ru of disconnecting bonds, shown full 
in the diagram, and the terms of the right-hand side represent the numbers Iti, ni, ni,, 
of bonds in the paths i, j and their intersection i,j. These numbers are, in this case 
( i  = 1, j = 2), 

(A131 

Similarly, for a basic diagram made of an intersection of three paths i, j and k the 

n l +  n 2 - n I n 2  = 6 + 6 -  10 = 2. 
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result quoted in (44) is 

r, = n , + n j + n k - n , , i - n , , k - n i , k + n i , , ~ k  

which can be illustrated by the example 

= 6 + 6 + 6 -  10- 10-8+ 12=2 .  (A161 

The general reason for results such as (A1 1) and (A14) is exhibited by the examples 
(A12) and (A15): the right-hand sides of ( A l l )  and (A14) are inclusion-exclusion 
combinations of properties (number of bonds) of a subset (of series paths) and all 
intersections of members of the subset. By a result of set theory this is the same as 
the property on the diagrams having only those bonds common to all members of the 
subset, i.e. the number of series bonds in the basic diagram, which is the number r, 
of disconnecting bonds. This is sufficient to establish (44) in general. 
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